Flux Hamiltonians, Lie algebras, and root lattices with minuscule decorations
نویسندگان
چکیده
منابع مشابه
Flux Hamiltonians, Lie Algebras and Root Lattices With Minuscule Decorations
We study a family of Hamiltonians of fermions hopping on a set of lattices in the presence of a background gauge field. The lattices are constructed by decorating the root lattices of various Lie algebras with their minuscule representations. The Hamiltonians are, in momentum space, themselves elements of the Lie algebras in these same representations. We describe various interesting aspects of...
متن کاملOn Simply Laced Lie Algebras and Their Minuscule Representations
The Lie algebra E6 may be defined as the algebra of endomorphisms of a 27-dimensional complex vector space MC which annihilate a particular cubic polynomial. This raises a natural question: what is this polynomial? If we choose a basis for MC consisting of weight vectors {Xw} (for some Cartan subalgebra of E6), then any invariant cubic polynomial must be a linear combination of monomials XwXw′X...
متن کاملNon-Linear Semi-Quantum Hamiltonians and Its Associated Lie Algebras
We show that the non-linear semi-quantum Hamiltonians which may be expressed as ( ) ( ) ˆ ˆ ∑ N j j j p H a q p O V q m 2 1 , 2 = = + + (where ˆ j O is the set of generators of some Lie algebra and ( ) q p , are the classical conjugated canonical variables) always close a partial semi Lie algebra under commutation and, because of this, it is always possible to integrate the mean values of the q...
متن کاملRoot filtration spaces from Lie algebras and abstract root groups
Both Timmesfeld’s abstract root subgroups and simple Lie algebras generated by extremal elements lead to root filtration spaces: synthetically defined geometries on points and lines which can be characterized as root shadow spaces of buildings. Here we show how to obtain the root filtration space axioms from root subgroups and classical Lie algebras.
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2009
ISSN: 0003-4916
DOI: 10.1016/j.aop.2008.06.005